Indications sur l’état sanitaire d’une cellule

Dans les années 1950 – 60, les chercheurs russes remarquent que lorsqu’un système biologique est soumis à une destruction (chauffage, congélation, empoisonnement), son émission photonique augmente, comme s’il envoyait un avertissement. Cette émission cesse à la mort du système.

Les chercheurs russes des années 70 (S. Stschurin, V.P. Kaznacheev et L. Michailova que nous avons présentés plus haut) ont constaté que l’intensité du rayonnement cellulaire change quand la cellule est agressée, endommagée ou qu’elle meurt.

Les cellules vivant normalement émettent un courant lumineux constant. Lorsqu’un virus pénètre dans les cellules, le rayonnement se modifie: augmentation du rayonnement, puis silence, puis nouvelle augmentation, puis extinction progressive du rayonnement en ondes multiples jusqu’à la mort des cellules. [Cité par F.A. Popp, Biologie de la lumière]

En 1974, Stschurin énonce: Les cellules touchées par différentes maladies ont des caractéristiques de rayonnement différentes. Nous sommes persuadés que les photons sont capables de nous informer très tôt avant le début d’une dégénérescence pernicieuse et de révéler la présence d’un virus.

Dans les années 1980, Nagl (biologiste), Popp et Li ont établi des théories fondamentales sur la relation entre les biophotons et la croissance des cellules, sur les différences d’émission entre des cellules saines et des cellules cancéreuses. Ils ont fait l’hypothèse que la figure de diffusion des photons des cellules contient l’information sur la présence d’une infection virale ou bactérienne. Ceci a été confirmé par des scientifiques du laboratoire national de Los Alamos (USA). Le virologue Lipkind a trouvé les premiers éléments indiquant la présence d’une infection virale par les biophotons (Institut International de Biophysique, Research and History, traduction A.B)

Le rayonnement est fonction de l’état de la cellule. Les informations incluses dans les biophotons rendent compte de l’état énergétique de la ou des cellules émettrices. L’émission d’une cellule saine est calme, comme une rivière tranquille. Selon les recherches de F.A. Popp, si on blesse une plante, d’autres plantes semblables placées autour en sont averties, même si elles sont éloignées. Tout dérangement augmente la production de rayonnement, comme si une activité de réparation se met en branle.

Il est probablement possible de déterminer l’état de santé d’un tissu biologique et aussi d’un organisme entier par les caractéristiques de ses émissions photoniques. La santé semble se manifester par une communication d’information aisée et abondante à l’intérieur du corps, tandis que la maladie consisterait en un appauvrissement de ce flux d’information.

Analyse de la qualité des tissus biologiques

La mesure du flux de biophotons émis par un organisme permet d’en tirer des informations sur l’état de santé ou de déséquilibre énergétique de cet organisme. Cette méthode est un complément prometteur des autres méthodes d’analyse biologique, car elle a l’avantage de ne pas introduire de produits dans l’organisme, ni de faire des prélèvements, de sorte qu’elle ne le perturbe pas.

Sur cette base, plusieurs types d’appareils ont été conçus, d’abord à l’Institut International de Biophysique de Neuss en Allemagne, ou mis au point dans divers secteurs de l’industrie en Europe et au Japon, pour évaluer l’état sanitaire de végétaux, d’animaux, ou du corps humain.

Maladies et vieillissement cellulaire

Selon de nombreuses études, incluant celles de Popp et d’autres en Australie, en Pologne et au Japon, on peut détecter l’état cancéreux d’un groupe de cellules en mesurant ses émissions de biophotons. Sur une biopsie (tissus prélevés dans l’organisme), on peut distinguer les cellules tumorales (cancéreuses) des cellules saines, déterminer leur degré de malignité et évaluer leur réponse énergétique à des substances médicamenteuses.

Popp, VanWikj et d’autres ont mesuré qu’un groupe de cellules cancéreuses n’émet pas les mêmes rayonnements que les groupes de cellules saines. Lorsqu’on stimule des cellules par la lumière, la bioluminescence augmente puis décroit. La vitesse de décroissance est beaucoup plus grande dans les cellules malignes, ce qui indique que leur capacité de stockage en biophotons est réduite. De plus les biophotons ont perdu une bonne partie de leur cohérence. Si on compare l’émission par des tissus d’épaisseur croissante, elle augmente dans le cas de cellules normales et diminue dans le cas de cellules tumorales.

Par la même technique, il est possible d’évaluer le vieillissement cellulaire et l’état du sang.

Des chercheurs japonais (Kobayashi et coll.) ont construit une chambre noire munie d’un système de comptage pour le corps entier. Ils ont mis en évidence que l’émission de biophotons du corps suit en tous points le rythme naturel biologique. Lorsqu’il y a des déviations, elles indiquent une maladie.

Qualité des aliments et cosmétiques

Une des applications les plus immédiates est l’évaluation de la qualité de la nourriture. Popp et ses collaborateurs ont fait de nombreuses mesures pour comparer les émissions de substances en fonction de leur mode de culture ou d’élevage, leur durée de stockage, leur contamination par des produits toxiques tels que les métaux (voir émission Archimède d’ARTE-TV). La qualité des aliments s’évalue en termes de faculté d’emmagasinage de lumière.

Par exemple, on a comparé l’émission photonique d’œufs de poules vivant en liberté à celle d’œufs de poules vivant en cage. Dans le premier cas, les photons étaient beaucoup plus cohérents.

La technique est également très utile pour évaluer la qualité des produits cosmétiques. On peut aussi évaluer leur innocuité avant de faire des tests biologiques sur les organismes, en particulier sur les animaux.

L’aspect de l’émission photonique d’un organisme végétal, animal ou humain donne des indications sur une éventuelle contamination par des bactéries ou des virus. Une application industrielle a été réalisée avec un fabricant de bière sur les mélanges de houblon fermenté.

Source : http://www.spirit-science.fr/doc_humain/ADN6photons.html#mozTocId449508



Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.